40 research outputs found

    Commutative Algorithms Approximate the LLL-distribution

    Get PDF
    Following the groundbreaking Moser-Tardos algorithm for the Lovasz Local Lemma (LLL), a series of works have exploited a key ingredient of the original analysis, the witness tree lemma, in order to: derive deterministic, parallel and distributed algorithms for the LLL, to estimate the entropy of the output distribution, to partially avoid bad events, to deal with super-polynomially many bad events, and even to devise new algorithmic frameworks. Meanwhile, a parallel line of work, has established tools for analyzing stochastic local search algorithms motivated by the LLL that do not fall within the Moser-Tardos framework. Unfortunately, the aforementioned results do not transfer to these more general settings. Mainly, this is because the witness tree lemma, provably, no longer holds. Here we prove that for commutative algorithms, a class recently introduced by Kolmogorov and which captures the vast majority of LLL applications, the witness tree lemma does hold. Armed with this fact, we extend the main result of Haeupler, Saha, and Srinivasan to commutative algorithms, establishing that the output of such algorithms well-approximates the LLL-distribution, i.e., the distribution obtained by conditioning on all bad events being avoided, and give several new applications. For example, we show that the recent algorithm of Molloy for list coloring number of sparse, triangle-free graphs can output exponential many list colorings of the input graph

    Stochastic Control via Entropy Compression

    Get PDF
    We consider an agent trying to bring a system to an acceptable state by repeated probabilistic action. Several recent works on algorithmizations of the Lovasz Local Lemma (LLL) can be seen as establishing sufficient conditions for the agent to succeed. Here we study whether such stochastic control is also possible in a noisy environment, where both the process of state-observation and the process of state-evolution are subject to adversarial perturbation (noise). The introduction of noise causes the tools developed for LLL algorithmization to break down since the key LLL ingredient, the sparsity of the causality (dependence) relationship, no longer holds. To overcome this challenge we develop a new analysis where entropy plays a central role, both to measure the rate at which progress towards an acceptable state is made and the rate at which noise undoes this progress. The end result is a sufficient condition that allows a smooth tradeoff between the intensity of the noise and the amenability of the system, recovering an asymmetric LLL condition in the noiseless case.Comment: 18 page

    Improved Bounds for Coloring Locally Sparse Hypergraphs

    Get PDF
    We show that, for every k ? 2, every k-uniform hypergaph of degree ? and girth at least 5 is efficiently (1+o(1))(k-1) (? / ln ?)^{1/(k-1)}-list colorable. As an application we obtain the currently best deterministic algorithm for list-coloring random hypergraphs of bounded average degree

    LIPIcs

    Get PDF
    The Lovász Local Lemma (LLL) is a powerful tool in probabilistic combinatorics which can be used to establish the existence of objects that satisfy certain properties. The breakthrough paper of Moser and Tardos and follow-up works revealed that the LLL has intimate connections with a class of stochastic local search algorithms for finding such desirable objects. In particular, it can be seen as a sufficient condition for this type of algorithms to converge fast. Besides conditions for existence of and fast convergence to desirable objects, one may naturally ask further questions regarding properties of these algorithms. For instance, "are they parallelizable?", "how many solutions can they output?", "what is the expected "weight" of a solution?", etc. These questions and more have been answered for a class of LLL-inspired algorithms called commutative. In this paper we introduce a new, very natural and more general notion of commutativity (essentially matrix commutativity) which allows us to show a number of new refined properties of LLL-inspired local search algorithms with significantly simpler proofs
    corecore